Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.

Identifieur interne : 000101 ( Main/Exploration ); précédent : 000100; suivant : 000102

Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.

Auteurs : Ania T. Deutscher [Australie] ; Catherine M. Burke [Australie] ; Aaron E. Darling [Australie] ; Markus Riegler [Australie] ; Olivia L. Reynolds [Australie] ; Toni A. Chapman [Australie]

Source :

RBID : pubmed:29729663

Descripteurs français

English descriptors

Abstract

BACKGROUND

Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets).

RESULTS

Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains.

CONCLUSIONS

Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.


DOI: 10.1186/s40168-018-0463-y
PubMed: 29729663
PubMed Central: PMC5935925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.</title>
<author>
<name sortKey="Deutscher, Ania T" sort="Deutscher, Ania T" uniqKey="Deutscher A" first="Ania T" last="Deutscher">Ania T. Deutscher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia. ania.deutscher@dpi.nsw.gov.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia. ania.deutscher@dpi.nsw.gov.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burke, Catherine M" sort="Burke, Catherine M" uniqKey="Burke C" first="Catherine M" last="Burke">Catherine M. Burke</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life Sciences, University of Technology Sydney, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Darling, Aaron E" sort="Darling, Aaron E" uniqKey="Darling A" first="Aaron E" last="Darling">Aaron E. Darling</name>
<affiliation wicri:level="1">
<nlm:affiliation>The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The ithree institute, University of Technology Sydney, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riegler, Markus" sort="Riegler, Markus" uniqKey="Riegler M" first="Markus" last="Riegler">Markus Riegler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reynolds, Olivia L" sort="Reynolds, Olivia L" uniqKey="Reynolds O" first="Olivia L" last="Reynolds">Olivia L. Reynolds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chapman, Toni A" sort="Chapman, Toni A" uniqKey="Chapman T" first="Toni A" last="Chapman">Toni A. Chapman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29729663</idno>
<idno type="pmid">29729663</idno>
<idno type="doi">10.1186/s40168-018-0463-y</idno>
<idno type="pmc">PMC5935925</idno>
<idno type="wicri:Area/Main/Corpus">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000108</idno>
<idno type="wicri:Area/Main/Curation">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000108</idno>
<idno type="wicri:Area/Main/Exploration">000108</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.</title>
<author>
<name sortKey="Deutscher, Ania T" sort="Deutscher, Ania T" uniqKey="Deutscher A" first="Ania T" last="Deutscher">Ania T. Deutscher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia. ania.deutscher@dpi.nsw.gov.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia. ania.deutscher@dpi.nsw.gov.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burke, Catherine M" sort="Burke, Catherine M" uniqKey="Burke C" first="Catherine M" last="Burke">Catherine M. Burke</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life Sciences, University of Technology Sydney, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Darling, Aaron E" sort="Darling, Aaron E" uniqKey="Darling A" first="Aaron E" last="Darling">Aaron E. Darling</name>
<affiliation wicri:level="1">
<nlm:affiliation>The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The ithree institute, University of Technology Sydney, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riegler, Markus" sort="Riegler, Markus" uniqKey="Riegler M" first="Markus" last="Riegler">Markus Riegler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reynolds, Olivia L" sort="Reynolds, Olivia L" uniqKey="Reynolds O" first="Olivia L" last="Reynolds">Olivia L. Reynolds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chapman, Toni A" sort="Chapman, Toni A" uniqKey="Chapman T" first="Toni A" last="Chapman">Toni A. Chapman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetobacteraceae (classification)</term>
<term>Acetobacteraceae (genetics)</term>
<term>Acetobacteraceae (isolation & purification)</term>
<term>Animals (MeSH)</term>
<term>Gastrointestinal Microbiome (genetics)</term>
<term>Genome (genetics)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Larva (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Symbiosis (physiology)</term>
<term>Tephritidae (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (génétique)</term>
<term>Acetobacteraceae (classification)</term>
<term>Acetobacteraceae (génétique)</term>
<term>Acetobacteraceae (isolement et purification)</term>
<term>Animaux (MeSH)</term>
<term>Génome (génétique)</term>
<term>Larve (microbiologie)</term>
<term>Microbiome gastro-intestinal (génétique)</term>
<term>Symbiose (physiologie)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Tephritidae (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Acetobacteraceae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Acetobacteraceae</term>
<term>Gastrointestinal Microbiome</term>
<term>Genome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Acetobacteraceae</term>
<term>Génome</term>
<term>Microbiome gastro-intestinal</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Acetobacteraceae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Acetobacteraceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Larve</term>
<term>Tephritidae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Larva</term>
<term>Tephritidae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>High-Throughput Nucleotide Sequencing</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29729663</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>05</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.</ArticleTitle>
<Pagination>
<MedlinePgn>85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-018-0463-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets).</AbstractText>
<AbstractText Label="RESULTS">Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains.</AbstractText>
<AbstractText Label="CONCLUSIONS">Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deutscher</LastName>
<ForeName>Ania T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia. ania.deutscher@dpi.nsw.gov.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia. ania.deutscher@dpi.nsw.gov.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burke</LastName>
<ForeName>Catherine M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Darling</LastName>
<ForeName>Aaron E</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riegler</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reynolds</LastName>
<ForeName>Olivia L</ForeName>
<Initials>OL</Initials>
<AffiliationInfo>
<Affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chapman</LastName>
<ForeName>Toni A</ForeName>
<Initials>TA</Initials>
<AffiliationInfo>
<Affiliation>Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Olivia L Reynolds</GrantID>
<Agency>Horticulture Australia</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016947" MajorTopicYN="Y">Acetobacteraceae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069196" MajorTopicYN="N">Gastrointestinal Microbiome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033621" MajorTopicYN="N">Tephritidae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Acetic acid bacteria</Keyword>
<Keyword MajorTopicYN="Y">Bactrocera tryoni</Keyword>
<Keyword MajorTopicYN="Y">Diptera</Keyword>
<Keyword MajorTopicYN="Y">Host–microbe interactions</Keyword>
<Keyword MajorTopicYN="Y">Illumina</Keyword>
<Keyword MajorTopicYN="Y">Insect–microbe interactions</Keyword>
<Keyword MajorTopicYN="Y">Microbial symbiont</Keyword>
<Keyword MajorTopicYN="Y">Microbiota</Keyword>
<Keyword MajorTopicYN="Y">Sterile insect technique</Keyword>
<Keyword MajorTopicYN="Y">Tephritidae</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29729663</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-018-0463-y</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-018-0463-y</ArticleId>
<ArticleId IdType="pmc">PMC5935925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Econ Entomol. 2017 Feb 1;110(1):298-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28039426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2017 Sep;74(9):1076-1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28642971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24316578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 May;75(10):3281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 13;8(8):e70749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23967097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2014 Oct;69:12-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24862156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathog Glob Health. 2013 Sep;107(6):305-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24091152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2015 Aug;70(2):498-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25666536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Oct 18;7(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jun;73(11):3470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 12;9(9):e106988</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 01;10(9):e0136459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26325068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Jul;13(7):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9641-9646</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28830993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2014 Apr;6(4):912-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24682158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Aug 15;24(16):1757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18567917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Aug;75(16):5227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2014 Nov 12;12:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Feb 1;197(3):435-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 May;12(3):428-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22369549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jan;4(1):28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19617877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2016 Sep 20;4:e2492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27688981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 1;28(11):1420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22495754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Jan;11(1):100-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jan;173(2):697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1987160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Mar;22(3):549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2010 May 22;277(1687):1545-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2004;49:71-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2017 Sep;43(9):891-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28836040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Oct;79(19):5962-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 30;5:9470</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25822599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Sep 8;12(10):1656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Sci. 2010;10:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20883132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2006 Nov;52(11):1085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1985 Oct;67(3):447-454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2014 Dec;27(12):2695-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25403559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 20;15:1153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2012 Dec 19;3:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23267352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 15;26(2):266-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2011 Aug;63(2):226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2014 Jun;94(8):1600-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24284907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Jan 18;12 Suppl 1:S2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22375964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2012 Dec;58(12):1344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):670-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2010 Oct;60(3):644-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010 Jul 08;6(7):e1000844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2015 Sep;11(9):20150469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26382071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut Microbes. 2012 Jul-Aug;3(4):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22572876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jul;26(7):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Dec;11(12):3252-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19735280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Nov 15;30(22):3276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25095880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2014 May 05;11(5):4745-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24859749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 May;10 (5):1037-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26565723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Nov;75(22):7097-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2017 Dec 5;110(6):2459-2465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jan;79(1):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Microbiol. 2009 Dec;26(8):827-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19835767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Nov;76(21):6963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20851977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Nov 05;4(6):e00860-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):699-735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut Pathog. 2016 May 26;8:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27239228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2013 Apr;106(2):641-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23786049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Mar;17 (5):1375-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18302695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Springerplus. 2016 Jun 13;5(1):708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27375977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jul 14;6:7618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26173063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Jan 18;12 Suppl 1:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22376056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Sep;7(9):e1002272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Jul;144(3):353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15891831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>R Soc Open Sci. 2015 Jul 29;2(7):150170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26587275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Sep;81(18):6232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26150460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1983 Dec;60(3):279-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 22;457(7228):480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19043404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2012 Apr;41(2):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Deutscher, Ania T" sort="Deutscher, Ania T" uniqKey="Deutscher A" first="Ania T" last="Deutscher">Ania T. Deutscher</name>
</noRegion>
<name sortKey="Burke, Catherine M" sort="Burke, Catherine M" uniqKey="Burke C" first="Catherine M" last="Burke">Catherine M. Burke</name>
<name sortKey="Chapman, Toni A" sort="Chapman, Toni A" uniqKey="Chapman T" first="Toni A" last="Chapman">Toni A. Chapman</name>
<name sortKey="Darling, Aaron E" sort="Darling, Aaron E" uniqKey="Darling A" first="Aaron E" last="Darling">Aaron E. Darling</name>
<name sortKey="Deutscher, Ania T" sort="Deutscher, Ania T" uniqKey="Deutscher A" first="Ania T" last="Deutscher">Ania T. Deutscher</name>
<name sortKey="Reynolds, Olivia L" sort="Reynolds, Olivia L" uniqKey="Reynolds O" first="Olivia L" last="Reynolds">Olivia L. Reynolds</name>
<name sortKey="Reynolds, Olivia L" sort="Reynolds, Olivia L" uniqKey="Reynolds O" first="Olivia L" last="Reynolds">Olivia L. Reynolds</name>
<name sortKey="Riegler, Markus" sort="Riegler, Markus" uniqKey="Riegler M" first="Markus" last="Riegler">Markus Riegler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000101 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000101 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29729663
   |texte=   Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29729663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020